일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Tags
- TCP
- 서포트벡터머신이란
- support vector machine 리뷰
- CNN
- pytorch c++
- Deep Learning
- pytorch
- yolo
- 논문분석
- Computer Vision
- cnn 역사
- SVM margin
- cs231n lecture5
- computervision
- EfficientNet
- CS231n
- SVM hard margin
- Object Detection
- self-supervision
- darknet
- Faster R-CNN
- libtorch
- svdd
- DeepLearning
- 데이터 전처리
- fast r-cnn
- RCNN
- SVM 이란
- yolov3
- pytorch project
Archives
- Today
- Total
목록배치 정규화 (1)
아롱이 탐험대

activation function에 이어 data preprocessing에 대해 알아보자 데이터의 전처리 과정은 우선 각각에 대해 평균을 빼줌으로써 zoro-centered 시키는 과정을 통해 정규화를 진행한다. 하지만 image에서는 zero-centered 과정은 필요하지 않다. 그 이유는 각각의 pixel은 0~255까지의 범위이기 때문이다. PCA와 Whitening이라는 주성분 분석은 데이터의 차원을 줄이고자 진행한다. 하지만 이미지에서는 이것 또한 쓰지 않는다. image에서는 전체 img에서 평균이 되는 img를 빼주거나 아니면 channel별로 mean값을 빼주는 방법이 있다. 이 두 가지 방법 중 후자인 channel의 mean을 빼주는 방식이 더욱 간편하다. 다음은 매우 중요한 we..
study/cs231n
2020. 4. 13. 11:32