일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- self-supervision
- 서포트벡터머신이란
- yolov3
- darknet
- SVM 이란
- SVM hard margin
- EfficientNet
- Computer Vision
- pytorch
- RCNN
- support vector machine 리뷰
- pytorch c++
- TCP
- Deep Learning
- 논문분석
- svdd
- SVM margin
- Faster R-CNN
- CS231n
- Object Detection
- cnn 역사
- computervision
- fast r-cnn
- yolo
- CNN
- 데이터 전처리
- DeepLearning
- libtorch
- cs231n lecture5
- pytorch project
Archives
- Today
- Total
목록anogan (1)
아롱이 탐험대

OVERVIEW 의료, 기계 등의 분야에서 Anomaly detection (비정상 데이터 탐지)는 매우 중요하다. 현재 몇 회사들은 인공 지능을 활용해 기계의 결함을 분석한다든지, 의료 데이터를 활용해 환자의 질병을 도출하는 기술들을 개발 중이다. 하지만 위와 같은 데이터들은 몇 가지 문제점들이 있다. (1) 정상 데이터에 비해 비정상 데이터의 양은 현저히 낮다. (2) 모든 이미지 데이터를 라벨링 하기에는 큰 인력이 필요하다. (3) 이미지 전체의 특징 활용도가 낮다. 이외에도 몇 가지 문제점들이 존재하는데, 이 문제점들을 해결하고자 이 논문이 등장하게 되었고, 저자는 이 논문의 제목처럼 unsupervied learning (비 지도 학습)과 GAN을 사용하였다. 간략히 설명하자면 여기서 Unsup..
study/paper reviews
2021. 7. 21. 19:37