일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Tags
- 논문분석
- yolov3
- RCNN
- pytorch
- cs231n lecture5
- CS231n
- pytorch c++
- svdd
- TCP
- Faster R-CNN
- SVM hard margin
- support vector machine 리뷰
- SVM margin
- Computer Vision
- pytorch project
- computervision
- EfficientNet
- DeepLearning
- 서포트벡터머신이란
- cnn 역사
- Deep Learning
- CNN
- fast r-cnn
- libtorch
- self-supervision
- 데이터 전처리
- SVM 이란
- yolo
- Object Detection
- darknet
Archives
- Today
- Total
목록mle 구현 (1)
아롱이 탐험대

Data load를 제외한 모든 Linear Regression의 과정들을 python과 numpy만을 사용하여 구현해보았습니다. 개념에 대한 전체적인 내용은 아래 포스트를 참고하시기 바랍니다. https://ys-cs17.tistory.com/73 Code implementation Normalization weight-height.csv 파일을 DataFrame으로 만든 후 해당 함수를 통해 normalization을 진행합니다. 1. Min max normalization def min_max_normalize(df): x = (df['Weight'] - min(df['Weight'])) / (max(df['Weight']) - min(df['Weight'])) y = (df['Height'] - ..
study/Machine Learning
2022. 5. 18. 11:48