일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- self-supervision
- pytorch project
- SVM hard margin
- support vector machine 리뷰
- SVM margin
- CNN
- libtorch
- darknet
- Computer Vision
- TCP
- 데이터 전처리
- DeepLearning
- cs231n lecture5
- Deep Learning
- EfficientNet
- 논문분석
- SVM 이란
- yolov3
- pytorch c++
- computervision
- Object Detection
- pytorch
- svdd
- yolo
- Faster R-CNN
- 서포트벡터머신이란
- cnn 역사
- RCNN
- CS231n
- fast r-cnn
Archives
- Today
- Total
목록Naive Bayes Classification 구현 (1)
아롱이 탐험대

CODE (1) main.py import numpy as np import warnings from dataloader import DataLoader from model import get_GaussianNBC, predict, get_ACC warnings.filterwarnings("ignore", category=RuntimeWarning) if __name__ == "__main__": train_path = './data/train/' test_path = './data/test/' train_setting = DataLoader(train_path, 'train') # 60000 * 28 * 28 * 3 test_setting = DataLoader(test_path, 'test') # 1..
study/Machine Learning
2022. 7. 6. 16:28