일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- pytorch
- EfficientNet
- SVM hard margin
- Deep Learning
- 데이터 전처리
- cs231n lecture5
- support vector machine 리뷰
- self-supervision
- darknet
- pytorch c++
- Faster R-CNN
- cnn 역사
- SVM 이란
- TCP
- CNN
- libtorch
- SVM margin
- 서포트벡터머신이란
- DeepLearning
- computervision
- yolov3
- RCNN
- pytorch project
- 논문분석
- yolo
- Object Detection
- Computer Vision
- fast r-cnn
- svdd
- CS231n
- Today
- Total
목록All (94)
아롱이 탐험대
지난 시간에 이어 Neuroal network의 학습 과정에 대해서 더욱 자세히 알아보자. 앞부분은 지난 수업의 복습이니 생략하겠다. 만약 기억이 안 나면 이전 포스팅을 보고 오길 바란다. 파라미터 업데이트에 관해 알아보자 뉴런 네트워크에서 training을 거치는 과정은 이런 과정으로 진행되고 마지막 줄과 같이 learning rate와 dx를 곱해 parameter update가 진행된다. 이러한 방법을 SGD 또는 경사 하강법이라고 부른다. 하지만 SGD는 갱신 속도가 매우 느려서 실제에서는 사용되지 않는다. 우리가 빨간색 행성에서 가운데에 위치한 행성으로 간다고 가정하자. SGD에서는 수직으로는 경사가 급하고, 수평으로는 얕다 따라서 가운데로 움직이는 벡터는 수직으로는 빠르게, 수평으로는 느리게 ..
activation function에 이어 data preprocessing에 대해 알아보자 데이터의 전처리 과정은 우선 각각에 대해 평균을 빼줌으로써 zoro-centered 시키는 과정을 통해 정규화를 진행한다. 하지만 image에서는 zero-centered 과정은 필요하지 않다. 그 이유는 각각의 pixel은 0~255까지의 범위이기 때문이다. PCA와 Whitening이라는 주성분 분석은 데이터의 차원을 줄이고자 진행한다. 하지만 이미지에서는 이것 또한 쓰지 않는다. image에서는 전체 img에서 평균이 되는 img를 빼주거나 아니면 channel별로 mean값을 빼주는 방법이 있다. 이 두 가지 방법 중 후자인 channel의 mean을 빼주는 방식이 더욱 간편하다. 다음은 매우 중요한 we..
지난 시간에 이어서 lecture 5를 살펴보자 우선 수업을 시작하기 전 실전에서 train을 어떻게 하는지에 대해 설명을 하였다. CNN을 train하려면 가장 필요한 건 막대한 데이터이다. 하지만 이 데이터들을 구하기도 힘들도 구했다 해도 train과 test 하는데 오랜 시간과 비용이 필요하다. 따라서 tensor flow, pytorch 같은 deep learning 모듈에서는 기본적인 finetuning 된 학습된 파라미터를 제공한다. (github이나 다른 사이트에서도 찾기 쉽다.) 따라서 우리가 가진 데이터는 너무 적은데, 우선 image net이라는 open data 웹사이트에 접속하여 image net data를 기반으로 학습을 시킨다. 그 후 우리가 가지고 있는 소량의 데이터로 fine..
지난 시간 loss function과 gradient descent에 이어서 설명하겠다. input과 weight를 곱해 bias를 더한 후 loss function을 통과하여 loss를 구하는 과정을 computation graph를 통해 시각적으로 표현하였다. 여기서는 max function을 이용하여 total loss를 구하였다. computation graph는 눈으로 보기에는 이해하기 쉽고 간단하지만, 계산적인 측면에서는 수만수억 개의 뉴런을 모두 이렇게 계산하기에는 많은 한계점들이 존재한다. 아래는 2020년 기준으로 잘 사용하지는 않지만 유명했던 network들이다. 간단한 예시의 module을 살펴보자. 우선 왼쪽에서 오른쪽 방향으로 가는 것을 FP(forward path)라 하고, 한국..
SSD: Single Shot Multibox Detector -Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg- 1. Introduction 이전 분석하였던 YOLO는 real time에 적용할 수 있는 object detector model이다. 하지만 YOLO는 input을 7*7 grid로 나눈 후 각 grid 별로 bounding box prediction을 진행하기 때문에 grid보다 작은 물체를 detecting하기에 힘든 점이 있다. 또한 맨 마지막 output은 convolution과 pooling 과정을 거친 후 마지막에 남은 feature만을 ..
lecture 3에서는 lecture 2에 이어서 loss function과 optimization에 대해 리뷰하겠다. 우선 이번 챕터에서는 유명한 loss function인 SVM과 softmax에 대해 설명한다. 지난 시간에 이어서 input에 weight를 곱하고, bias를 더함으로써 3개의 label에 대해 loss를 결과 값을 구하였다. 이 결괏값들을 loss function을 통해 loss를 도출하게 되는데 우선 처음 알아볼 loss function는 SVM이다. SVM은 위와 같이 정의되며 첫 번째 cat에 대한 loss는 계산을 하면 2.9가 된다. car에 대한 loss는 0이다. flog가 10.9으로써 loss가 가장 크고, 이는 인식률이 별로 좋지 않다는 것을 의미한다. 또한 fu..
본 정리에 앞서 현재 cs231n은 3 회독을 했지만 마지막 Lecture까지는 보질 못했다. 이번 기회에 다시 처음부터 cs231n을 공부하며 기본기를 다지려고 한다. https://www.youtube.com/watch?v=3QjGtOlIiVI&list=PL1Kb3QTCLIVtyOuMgyVgT-OeW0PYXl3j5를 보며 공부하며 리뷰하였고, 어느 정도 deep learning에 대해 안다고 가정하고 글을 작성하겠다. 만약 밑바닥부터 시작하는 딥러닝을 안 봤으면 먼저 이 책을 본 후 cs231n을 공부하길 바란다. 본인은 처음부터 cs231n을 보며 공부를 하다가 한동한 힘들었다. (cs231n은 스탠퍼드 대학원 강의입니다.) Lecture 1은 기본적인 오리엔테이션이니 시간이 남을 경우 보는 것을 ..
You Only Look Once: Unified, Real-Time Object Detection -Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi- 1. Introduction 저번 시간 분석하였던 Faster R-CNN에서는 real time에서 적용하기 힘든 단점이 있었다. 하지만 오늘 분석해볼 YOLO는 real time에 적용할 수 있는 속도를 갖고, 기존 real time에 적용시킨 network보다 약 2배정도 성능이 좋다. 기존 R-CNN network들은 two stage method였지만 YOLO는 one stage method이다. 또한 기존 network들은 주로 여러 객체를 탐지할 때 이미지에서 각 객체를 분할하여 탐지하였..